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Abstract— 3D reconstructions from fully 3D PET data can
yield high-quality images but often at a high computational
cost. To obtain practical data processing and reconstruction
times, simplified and less precise approaches are used in the
routine clinical use. We studied the feasibility of using the
3D row action maximum likelihood algorithm (3D RAMLA)
with 3D spherically-symmetric basis functions (blobs) lo-
cated on an efficient spatial (body centered cubic) grid for
clinical PET data. The BCC grid provides more uniform
distribution of the basis functions that represent the recon-
structed object and decrease the computational time. An-
other development used in our study is a fast Fourier based
forward projector that provides very fast calculation of the
attenuation coefficients in fully 3D data space. These two
developments move fully 3D reconstruction using appropri-
ate data processing approaches toward clinically practical
times. We are studying the practical effects of the use of
these more precise approaches to fully 3D reconstruction on
clinical data.
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I. INTRODUCTION

ODERN Positron Emission Tomography (PET)

scanners are characterized by a large axial Field Of
View (FOV) which enables acquisition of data from a large
range of oblique angles. Efficient 3D algorithms are needed
to process the fully 3D data provided by those scanners in
clinically reasonable times. In our previous studies [1-3] on
3D image reconstruction for PET we used various iterative
algorithms operating on a series expansion representation
of the volume, where the spatial distribution to be recon-
structed was represented by the superposition of 3D basis
functions [4]. These basis functions, which we call ”blobs,”
are spherically-symmetric with bell-shaped radial profiles.
Using a blob basis function inside the reconstruction pro-
cess preserves the consistent component (true signal) of
the data, thus preserving the resolution of the measured
data, while at the same time suppressing the stochastic
part (noise) of the data, as experimentally confirmed in
[1]. Although filtering also suppresses noise, it can not pre-
serve the spatial resolution of the data at the same time.
In all of our studies, the 3D iterative reconstructions us-
ing blobs provided substantial and consistent improvement
over the methods using classical basis functions - voxels.
Until recently, the computational demands of the 3D it-
erative algorithms were found to be too high for routine
clinical use.
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To decrease reconstruction times, clinical reconstruction
approaches usually involve rebinning of the measured fully
3D data into non-oblique sinogram data within slices, fol-
lowed by slice by slice reconstruction. The most popular,
and clinically used, rebinning technique is Fourier rebin-
ning (FORE) [5]. Rebinning substantially decreases the
volume of the data at the expense of reduced quality caused
by using 2D reconstruction techniques instead of the 3D
methods. In our recent studies [6,7] we evaluated a 2.5D
reconstruction approach (used after FORE) that consider-
ably improves image quality over a pure 2D approach but
with computational demands of the same order as those of
2D techniques. The 2.5D reconstruction considerably de-
creases the computational burden because it uses rebinned
data while, at the same time, it takes into consideration
volume nature of the measured data (by using 3D blob ba-
sis functions) and thus keeps some advantages of the 3D
techniques. More precisely, in the 2.5D approach the re-
constructions of the individual slices are coupled, and it-
eration calculations for each projection line are influenced
by, and contribute to, several image slices. In our previ-
ous studies, images reconstructed by 2.5D algorithms were
found to be superior in terms of a number of figures of
merit related to resolution and noise to those produced by
2D algorithms, in which the individual slices are handled
separately [6,7]. However, both 2D and 2.5D approaches
are affected by rebinning approximation errors as the ax-
ial acceptance angle increases [8,9]. For axial acceptance
angles around (or exceeding) +15°, as occurs with some
of the recent commercial PET scanners, FORE approxi-
mation errors already introduce noticeable image artifacts
and nonuniform deterioration of axial resolution. There are
other more precise rebinning approaches [5], they are, how-
ever, computationally more demanding. In addition to the
approximation errors, approaches using rebinned data are
limited because of the lack of proper reconstruction mod-
els taking into account rebinning (and data acquisition)
effects.

Image representation using smooth basis functions pro-
vides an alternative approach that reduces the computa-
tional demands of 3D iterative approaches. This particular
image representation allows utilization of a more advanta-
geous spatial grid, compared to the classical voxel (simple
cubic) grid. It also leads to a more uniform 3D distribu-
tion of the basis functions (grid points) throughout the 3D
space, using Body Centered Cubic (BCC) grid based on
the effective spatial sampling [10]. This, in turn, allows
one to decrease the grid density (number of grid points)
without compromising the quality of the image represen-
tation. This result has been demonstrated in our previous



studies using simulated data [10] and is reevaluated in this
current study using measured PET data.

Proper treatment and utilization of attenuation informa-
tion plays an important role in whole body PET imaging
[11]. For the attenuation information to be treated prop-
erly, the attenuation coefficients are needed on the same
set of LORs as those of the acquired emission data. In
the fully 3D data case, the measured emission data has to
be corrected for attenuation before being processed by re-
binning or 3D reconstruction. For 3D iterative techniques,
the attenuation coefficients can be utilized directly within
the reconstruction model. Most typically, the attenua-
tion coefficients are calculated by the forward projection
of (preprocessed) transmission images. However, forward
projection into 4D parameter (fully 3D data) space is a
time consuming operation which might take considerably
more time than the reconstruction itself, as in the case of
FORE+2D/2.5D reconstruction approaches. For this rea-
son, simplified approaches are often used in routine clinical
use, such as rebinning of raw emission data without attenu-
ation correction and applying (2D) attenuation correction
afterwards. This substantially speeds-up the attenuation
correction calculations, since only non-oblique attenuation
factors are needed, but introduces additional errors into
the reconstruction process. As part of the development of
Direct Fourier Reconstruction with Fourier Reprojection
(3D_FRP) [12], we have implemented fast Fourier based
forward projector (FoProj) allowing for very fast calcula-
tion of fully 3D attenuation data and making proper treat-
ment of the attenuation information within the fully 3D
reconstruction process more practical.

In this work, we compare performance of the 3D and
2.5D iterative Row Action Maximum Likelihood Algorithm
(RAMLA) [3,13] using blobs on the efficient spatial (BCC)
grid. We also evaluate the impact of using attenuation
correction information in the reconstruction algorithm. 3D
PET data obtained from a clinical C-PET (ADAC UGM)
whole body scanner are used in our study.

II. METHODS
A. Reconstruction Algorithms

The row action maximum likelihood algorithm (RAMLA)
[13] was developed as a faster alternative to the maximum
likelihood expectation maximization (ML-EM) algorithm
for maximizing the Poisson likelihood in PET. In RAMLA,
the reconstructed image is updated for each projection line
(row of the system matrix) in a controlled way using a
relaxation parameter. The (k + 1)’th update step, where
k > 0, produces an image represented by a set of basis
function coefficients {c§-k+1) }7_1 using the formula

(k+1) _ (k) A ctB) Gy “1) a 1
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where iy = [k(modI) + 1], g;, and (a;,,c®)) represent the
measured data and forward projection for the ig’th line,
respectively, and )y is the relaxation parameter (including
normalization factor) fulfilling the condition Aga;,,; < 1

for every iy, j [13]. The data are accessed using a special
ordering scheme [14] to ensure that the sequential projec-
tion lines are as orthogonal as possible, thus considerably
speeding-up the rate of convergence. RAMLA achieves sta-
ble performance and relative independence on the starting
point via an appropriately chosen relaxation parameter,
controlling the amount of updates/corrections in each iter-
ation step.

In the studies reported in this paper we used a 3D imple-
mentation of RAMLA using blobs - modified Kaiser-Bessel
basis functions of second order [4] located on the standard
cubic (voxel) grid and on the efficient BCC grid [10] of
various grid step sizes. To study the improvement of the
true 3D reconstruction over the (pseudo 3D) reconstruction
from rebinned data we employed 2.5D RAMLA [6], which
is currently our best reconstruction technique for rebinned
PET data.

We applied 3D RAMLA and 2.5D RAMLA (after FORE)
to phantom and patient datasets. To determine optimal
parameters for each reconstruction algorithm for a given
activity distribution, the data were reconstructed and an-
alyzed for a range of parameters and blob sizes (FWHM)
by varying the blob radius a (2-3, relative to voxel size
of 4mm), blob shape parameter a (chosen as described
by Matej and Lewitt [1,10]), grid spacing g for the BCC
grid (1.8-2.26, relative to voxel size), and relaxation pa-
rameter A (0.001-0.1). In most cases, performing more
than one iteration of RAMLA did not significantly im-
prove image quality. The representative reconstruction
times for a set of comparable reconstruction parameters
(a = 2.5, a = 8.63, g = 2.00, 1 iteration, data: 128 radial
bins, 64 slices, 96 views, 7 tils, image: 144x144x64 with
4x4x4mm?® voxels) obtained on single processor Sparc Ul-
tra 10 (440MHz) were: 3D RAMLA (regular grid) 35:20
(min:sec), 3D RAMLA (BCC grid) 6:45, 2.5D RAMLA
1:56 (including 1min for FORE).

B. Attenuation Effects

We studied various ways of utilization of attenuation in-
formation: reconstructions from data precorrected for at-
tenuation in the fully 3D data space (4DAC), date cor-
rected in the rebinned data space (2DAC), and recon-
structions using attenuation information within the system
model (sysAC). The attenuation coefficients were obtained
by forward projection of the transmission images. Trans-
mission images were reconstructed from a !*7Cs single-
photon source transmission data, rescaled to 511-keV, and
segmented [15]. The transmission data were rebinned us-
ing the single-slice rebinning algorithm (SSRB) [16] and
corrected for emission contamination [17].

Forward projection was calculated using fast Fourier
based projector (FoProj) [12]. The computation time for
complete 4D attenuation coefficient/correction data (im-
age:144x144x64, data:128x64x96x7) was 0.8 min, as com-
pared to 3.7 min for the forward projection based on the
Siddon algorithm [18]. Although, both times are clin-
ically reasonable for this image size, the ratio between
them increases approximately proportionally to the im-



age size increase (based on the computation complexity
of O(N3logN) for FoProj versus O(N*) for Siddon). Ad-
ditional substantial speed-up of the FoProj algorithm can
be obtained by using (off-the-shelf) FFT processor boards.

C. Torso Phantom Studies

The IEC phantom distribution recently adopted by the
NEMA Coincidence Imaging Task Force for the measure-
ment of image quality [19] was used to mimic patient imag-
ing of the torso. The distribution consists of a torso phan-
tom, containing hot and cold spheres in a warm back-
ground. The hot spheres have diameters of 1.0, 1.3, 1.7,
and 2.2 cm; the cold spheres have diameters of 2.8 and 3.7
cm. A 5 cm diameter lung-like insert is also placed in the
center of the phantom to provide a nonuniform attenuation
distribution. The background was filled with ®F at an ac-
tivity concentration typical of what is seen in patient FDG
studies (250MBq in 70kg, or 3.6kBq/cc). The hot spheres
were filled with an activity concentration of 30 kBq/cc, for
a “tumor”:background activity ratio of 8:1. Scan durations
of 3, 6, and 12 min were selected to generate a wide range
of count densities. The ADAC UGM C-PET scanner with
a maximum axial acceptance angle of £15°, sorted into 7
tilt angles, was used.

To quantitate the performance of the algorithms, regions
of interest (ROIs) with diameters equal to the physical in-
ner diameter of each sphere were drawn on the slice through
the centers of the spheres. Twelve ROIs of the same sizes
as those for the spheres were drawn throughout the back-
ground in the central slice, as well as in slices £8 mm and
420 mm away. The coefficient of variation of the means in
these 60 background ROIs was determined for each sphere
size as a measure of the background variability. The hot
sphere contrast recovery coefficient (CRChot) was calcu-
lated as

CRChot = (Chot/Cokg — 1)/(anot/abrg — 1) (2)

where Chor and Cyig are the average of the counts measured
in the hot sphere ROI and the average of the counts in all 60
background ROIs, respectively, and apot/ aprg is the ratio
of the activities in the hot sphere and background (8 in
this study). The cold sphere contrast recovery coefficient
(CRC01q) was calculated as

CRCrcola = (1 — Ceota/Chiyg) (3)

where C.,1q is the average of the counts measured in the
cold sphere ROI.

D. Whole-body Patient Studies

Several clinical whole-body patient studies were acquired
after injection of 250MBq/70kg of ['*F]-FDG on the ADAC
UGM C-PET scanner. The five-frame studies covered 70
cm axially. The acquisition followed an interleaved emis-
sion (6 min) / transmission (1.5 min) protocol.

III. RESULTS AND DISCUSSION

Figure 1 shows for the IEC phantom data a plot of con-
trast vs. background variability for the 6-min scan for 3D
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Fig. 1. Plots for the 6 spheres (4 smallest are hot, 2 largest are
cold) for 6-min scan. The open symbols are for various blob and grid
parameters (a:a:g = 2:3.6:2.26, 3:9.5:2.26, 2.5:8.63:2.00, 3:13.06:1.8)
and various A for 3D RAMLA using BCC grid. The closed sym-
bols are for one representative reconstruction by slower version of
RAMLA (a:a = 3.0:12.95) using standard cubic grid. We can obtain
comparable contrast/variability performance with RAMLA _BCC for
an appropriate choice of blob/grid parameters as with slower version
of 3D RAMLA, but in about 1/5 the reconstruction time.

RAMLA _BCC using various blob, grid and A parameters.
The plots for each feature size form approximately a single
curve. The points representing results for 3D RAMLA us-
ing a regular cubic grid (solid symbols) and optimal param-
eters (based on our previous studies) lie on the same curves,
showing that the two methods provide similar contrast ver-
sus noise tradeoff for an appropriate choice of parameters.
At the same time, RAMLA _BCC provide about 5.2-times
shorter reconstruction time. The comparable quality of the
two methods was also confirmed by the visual observation
of the reconstructed phantom and patient images.

Figure 2 shows example of the study using IEC phan-
tom comparing 2.5D reconstruction with 2D attenuation
precorrection done after FORE to the 3D RAMLA (BCC)
with system attenuation correction within the model. The
first approach represents a simplification of the theory, but
as can be seen in the left image, it still provides reasonable
images and is often employed in the routine clinical use
because of its low computational demands. The improve-
ment due to proper use of the attenuation information in
the fully 3D reconstruction algorithm is demonstrated by
the increase of the background uniformity and the increase
of the contrast of the features.

Figure 3 shows similar comparison for the whole-body
patient study. On the left is coronal image of 2.5D RAMLA
with pre-correction for attenuation after FORE using 2D
attenuation correction factors. On the right is the corre-
sponding slice for 3D RAMLA with system-modeling of
attenuation effects using 4D attenuation correction factors
generated using FoProj. It is evident that the fully 3D



Fig. 2. 6-min IEC phantom study reconstructed using 2.5D RAMLA
with 2DAC (left side) and 3D RAMLA with sysAC (right side). It
can be seen that the background is more uniform with 3D RAMLA

and system-modeling of attenuation effects.
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Fig. 3. Patient whole-body study (coronal images) reconstructed
using 2.5D RAMLA with 2DAC (left side) and 3D RAMLA with
sysAC (right side). It can be clearly seen that 3D RAMLA provides
more uniform and less noisy reconstruction. The bladder streak arti-
facts seen throughout the slices of the 2.5D/2DAC reconstruction are
completely absent in the 3D /sysAC reconstruction.

reconstruction together with the system modeling of the
attenuation provides a definite improvement of the image
quality. This is demonstrated by a combination of in-
creased background uniformity, decreased noise and sup-
pression of the bladder artifacts.

Examples shown in Figures 2 and 3 represent two ways
to utilize attenuation information. The first - 2DAC af-
ter FORE - is oversimplified but is a very fast approach,
while the second - system modeling with 4DAC - is more
theoretically sound but is significantly slower. Note, that
due to the developments discussed in this paper, even the
second approach is now becoming feasible for the clinical
use. There are several intermediate possibilities between
these two extremes, such as using 4DAC+FORE+2D it-
erative reconstruction (OS-EM) which is in use at other
clinical sites [11]. Our observations suggest that both the
system modeling of attenuation and the use of a fully 3D
reconstruction algorithm (rather than rebinning) lead to
improvements in image quality. We are currently investi-
gating the influence of individual steps on the reconstruc-
tion quality of the PET images in a more rigorous way
employing measures of contrast and noise, as represented
by the study in Figure 1. The results will be used to guide

the data processing and image reconstruction protocols for
the whole body patient studies.

REFERENCES

[1] S. Matej and R. M. Lewitt, “Practical considerations for 3D
image reconstruction using spherically-symmetric volume ele-
ments,” IEEE Trans. Med. Imaging, vol. 15, no. 1, pp. 68-78,
1996.

[2] S. Matej, G. T. Herman, T. K. Narayan, S. S. Furuie, R. M.
Lewitt, and P. E. Kinahan, “Evaluation of task-oriented per-
formance of several fully 3D PET reconstruction algorithms,”
Phys. Med. Biol., vol. 39, no. 3, pp. 355-367, 1994.

[3] S. Matej and J. A. Browne, “Performance of a fast maximum
likelihood algorithm for fully 3D PET reconstruction,” in Series
Computational Imaging and Vision: Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, P. Grangeat
and J.-L. Amans, Eds., pp. 297-316. Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 1996.

[4] R. M. Lewitt, “Multidimensional digital image representations
using generalized Kaiser-Bessel window functions,” J. Opt. Soc.
Am. A, vol. 7, no. 10, pp. 1834-1846, 1990.

[5] M. Defrise, P. E. Kinahan, D. W. Townsend, C. Michel, M. Si-
bomana, and D. F. Newport, “Exact and approximate rebinning
algorithms for 3D PET data,” IEEE Trans. Med. Imaging, vol.
16, no. 2, pp. 145-158, 1997.

[6] T.Obi, S. Matej, R. M. Lewitt, and G. T. Herman, “2.5D simul-
taneous multislice reconstruction by series expansion methods
from Fourier-rebinned PET data,” IEEFE Trans. Med. Imaging,
vol. 19, no. 5, pp. 474-484, 2000.

[7] M. E. Daube-Witherspoon, S. Matej, J. S. Karp, and R. M.
Lewitt, “Application of the row action maximum likelihood al-
gorithm with spherical basis functions to clinical PET imaging,”
IEEE Trans. Nucl. Sci., vol. 48, no. 1, pp. 24-30, 2001.

[8] S. Matej, J. S. Karp, R. M. Lewitt, and A. J. Becher, “Per-
formance of the Fourier rebinning algorithm for PET with large
acceptance angles,” Phys. Med. Biol., vol. 43, no. 4, pp. 787795,
1998.

[9] J.S.Karp, A.J. Becher, S. Matej, and P. E. Kinahan, “Data pro-

cessing and image reconstruction methods for the HEAD PENN-

PET scanner,” IEEE Trans. Nucl. Sci., vol. 45, no. 3, pp. 1144-

1151, 1998.

S. Matej and R. M. Lewitt, “Efficient 3D grids for image recon-

struction using spherically-symmetric volume elements,” IEEE

Trans. Nucl. Sci., vol. 42, no. 4, pp. 1361-1370, 1995.

C. Comtat, P. E. Kinahan, M. Defrise, C. Michel, and D. W.

Townsend, “Fast reconstruction of 3D PET data with accurate

statistical modeling,” IEEE Trans. Nucl. Sci., vol. 45, no. 4,

Part 2, pp. 1083-1089, 1998.

S. Matej, “3D-FRP: Direct Fourier reconstruction with Fourier

reprojection for fully 3D PET,” in Proceedings of the 2000 IEEE

Nuclear Science Symposium and Medical Imaging Conference.

CDROM, IEEE572. Lyon, France, October 15-20, 2000, To be

published.

J. A. Browne and A. R. De Pierro, “A row-action alternative to

the EM algorithm for maximizing likelihoods in emission tomog-

raphy,” IEEE Trans. Med. Imaging, vol. 15, no. 5, pp. 687699,

1996.

G. T. Herman and L. B. Meyer, “Algebraic reconstruction tech-

niques can be made computationally efficient,” IEFEE Trans.

Med. Imaging, vol. 12, no. 3, pp. 600-609, 1993.

R. J. Smith, J. S. Karp, G. Muehllehner, E. Gualtieri, and

F. Bénard, “Singles transmission scans performed post-injection

for quantitative whole body PET imaging,” IEEE Trans. Nucl.

Sci., vol. 44, no. 3, pp. 1329-1335, 1997.

M. E. Daube-Witherspoon and G. Muehllehner, “Treatment of

axial data in three-dimensional PET,” J. Nucl. Med., vol. 28,

pp. 1717-1724, 1987.

J. S. Karp, G. Muehllehner, H. Qu, and X. H. Yan, “Sin-

gles transmission in volume-imaging PET with a 137Cs source,”

Phys. Med. Biol., vol. 40, pp. 929-944, 1995.

R. L. Siddon, “Fast calculation of the exact radiological path

for a three-dimensional CT array,” Med. Phys., vol. 12, no. 2,

pp. 252-255, 1985.

J. S. Karp, R. J. Smith, G. Muehllehner, M. E. Daube-

Witherspoon, and H. Hines, “Image quality measurement for

evaluation of PET scanner performance (abstract),” J. Nucl.

Med., vol. 39, no. 5, pp. 133P-134P, 1998.

[10]

11]

(12]

14]

(18]



